A Switch-Level Model

and Simulator for MOS Digital Systems

Randal E Bryant

Computer Science Department |
California Institute of Technology

5065:TR:83

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
28 JUL 1983 2. REPORT TYPE 28-07-1983 to 28-07-1983
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A Switch-Level Model and Simulator for MOS Digital Systems £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Defense Advanced Resear ch Projects Agency,3701 North Fairfax REPORT NUMBER
DriveArlington,VA,22203-1714

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 56
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

A SWITCH-LEVEL MODEL AND SIMULATOR FOR MOS DIGITAL SYSTEMS

by

Randal E. Bryant _
Computer Science Department
California Institute of Technology
Pasadena California 91125

5065:TR:83

Revised
28 July 1983

This research was funded in part by the
Defense Advanced Research Contracts Agency
ARPA Order Number 3771
and by the
Caltech Silicon Structures Project

b

© California Institute of Technology, 1983

A SWITCH-LEVEL MODEL AND SIMULATOR FOR MOS DIGITAL SYSTEMSI

Randal E. Bryant2
28 July 1983

ABSTRACT

The switch-level model describes the logical behavior of digital systems
implemented in metal oxide semiconductor (MOS) technology. In this model a
network consists of a set of nodes connected by transistor "switches" with
each node having a state 0, 1, or X (for invalid or uninitialized), and each
transistor having a state "open", "closed", or '"indeterminate'". Many
characteristics of MOS circuits can be modeled accurately, including: ratioed,
complementary, and precharged logic; dynamic and static storage;
(bidirectional) pass transistors; busses; charge sharing; and sneak paths. In
this paper we present a formal development of the switch-level model starting
from a description of circuit behavior in terms of switch graphs. Then we
describe an algorithm for a logic simulator based on the switch-level model
which computes the new state of the network by solving a set of equations in a
simple, discrete algebra. This algorithm has been implemented in the
simulator MOSSIM IT and has been used to simulate circuits containing over
10,000 transistors. By developing a formal theory of M0S logic circults, we

have achieved a greater degree of generality and accuracy than is found in
other logic simulators for MOS.

1. Introduction

The study of formal models of digital systems in recent times has been
limited primarily to the Boolean logic gate model in which a system consists
of a set of wunidirectfonal logic elements {gates)} connected by one-way,
memoryless wires. In contrast to this restricted model, designers of digital
systems implemented in metal oxide semiconductor (MOS) technologyl can utilize
a wide wvariety of design techniques. In MOS, the field-effect transistor
serves as the basic logic element acting as a wvoltage-controlled switch
connecting two nodes with a low resistance when turned on and a very high
resistance (essentially infinite) when turned off. The wires have sufficient

capacitance and can be isolated from one another well enough to store

1this research was funded in part by the Defense Advanced Research Contracts
Agency ARPA Order Number 3771 and by the Caltech Silicon Structures Project.

2Current address:t Computer Science 256-80, California TInstitute of
Technology, Pasadena, CA 91125.

information as charge; a technique known as dynamic memory. These elements
can be used to build not only conventional Boolean logic gates, but also such
structures as precharged logic, pass transistors networks, dynamic and static
memory elements, and several varleties of busses. The Boolean gate model

cannot describe the behavior of these structures in a satisfactory way.

This mismatch between the formal model and the circuit technology has
detered the development of methods for describing and simulating the logical
behavior of MOS digital systems. A number of logic simulators for MOS systems
have been developed by extending the Boolean gate model with additional logic
states (e.g. '"high impedance", '"charged 0", "charged 1", etec.) and special
logic elements (such as unidirectional pass transistor models),2s 3, 4 put
these extensions lack any mathematical basls and are limited in their
generality and accuracy. Inevitably the user must translate the design into a
form compatible with the simulator, and the resulting simulation is inherently
biased toward the user’s understanding of the functionality of the circuit.
Other analytic techniques developed for other forms of logic circuits such as
race detection and fault modeling have not been applied successfully to MOS

clrcuits due to this lack of an adequate logic model.

The switch-level modelds 6 has been developed to describe the logical
behavior of MOS circuits. In this model a network consists of a set of nodes
connected by transistor switches, with node states 0, 1, and X representing
low, high, and invalid (or uninitialized) voltages, and with transistor states
0, 1, and X representing open, closed, and indeterminate switches.
Transistors have no assigned direction of information flow and are assigned
different strengths to model the effect of their relative resistances in
ratioed circuits. Several types of transistors are ptovided to model
different logic families (e.g. CMOS, nMOS). Nodes retaln their states in the
absence of applied inputs, giving an idealized model of dynamiec storage.
Nodes are assigned different sizes to model the effects of thelr relative

capacitances in charge sharing. 1In keeping with the concept of a logic model,

all state and parameter values are from small, discrete sets, and the
electrical operation of a circuit is modeled in a highly idealized way. By
developing a special model for MOS systems, we achleve greater generality,
accuracy, and mathematical rigor than ad hoc extensions of the Boolean gate
model, The network model described here bears many similarities to the
Connector-Switch-Attenuator model of Hayes,’s 8 except that our transistors
act as both switches and attenuators, and our approach to computing the

network function is quite different, as will be described later.

Several logic simulators have been implemented based on switch-level
models.%> 10, 11 Thege programs have simulated a large variety of MOS designs
including ones containing over 10,000 transistors. Switch-level simulators
operate fast enough that it becomes practical to perform full chip simulations
for thousands of clock cycles. Furthermore, since the switch-level network
corresponds closely to the actual circuit, it can be derived directly from the
mask specification by a relatively straightforward circuit extraction

program.l0 This allows an unbiased test of the circuit as it will actually be

fabricated.

Unlike logic gate networks in which the node states can be adequately
described by a two-valued Boolean algebra, MOS circuits require a three-valued

ternary algebra with the third or "X" state indicating an invalid logic level

(i.e. a voltage which may lie between the two logic thresholds). Such states
can arise due to improper charge sharing or short circuits (generally
transient) even in properly designed systems. As with logic gate networks,
this state can also be used to indicate an uninitialized node and can be used
in ternary simulation algorithms for race and hazard detection.l? 1n
introducing this state, we must describe the behavior of a network in the
presence of X states in a way which 1is neither overly optimistic (i.e.
ignoring possible error conditions), nor overly pessimistic (i.e. spreading
X’s beyond the region of indeterminate behavior.) Furthermore, if the model

is to form the basis of a simulation program, it must have an efficient

implementation. We will show in this paper that these goals can be achieved

for the switch-level model.

As Breuer has discussed13, using this third state in cases where the node
is in a "valid but unknown" condition can give overly pessimistic results,
because ternary logic does not obey the Law of Excluded Middle. Some digital
systems rely on the Law of Excluded Middle when first powered up to assure
that all feedback paths are initialized to wvalid logic levels, and hence the
system will be in some wvalid, but unknown initial state. Simulators which
begin with all nodes set to X do not capture this property. For example, when
power 1is first applied to a bistable circuit such as a flip-flop, the two
outputs Q and Q must satisfy the equation Q + Q@ = 1, but with ternary logicl4
X +X = X. No known algorithm, however, can utilize information about "wvalid
but unknown" logic values in a completely general way, except by resimulating
the network with such nodes set to all combinations of Boolean values. 1In
fact, a rigorous modeling of the effects of unknown but wvalid states would
require determining Boolean satisfiability, an NP-complete probleml3, Thus to
avoid an exponential algorithm, we shall not attempt to distinguish between
"unknown but valid" and "invalid" logic levels. TInstead we will use the

single value X and at times err on the side of pessimism.

In this paper we will describe the network model and derive a method for
expressing the excitation state of a switch-level network in terms of a graph
model. 1In this model the excitation state of a node is defined in terms of a
set of paths in an undirected graph with vertices corresponding to the network
nodes and edges corresponding to the transistors in the 1 and X states. By

carefully defining the concepts of rooted paths and path blocking, we provide

a unified expression of the wide variety of ways states are formed in MOS
circuits. We can also determine the effect of nodes and transistors in the X
state in a uniform and consistent way, and several important properties of the

excitation function can be proved.

The graph theoretic approach presented here has several advantages over the

lattice theoretic approaches presented by Bryant3, 6, Hayes/» 8, and Ullmanl®.
In the lattice theoretic approach a domain of signal values (called "states"
by Hayes) is constructed where each element represents both the logiec level
(i.e. 0, 1, or X), of a charge source as well as its strength {e.g. "charged",
"weakly driven", "strongly driven", etc.) These signal values are partially
ordered according to their precedence when a set of charge sources combine at
a node. While this approach at first seems very elegant, it cannot adequately
describe the effect of transistors 1in the X state and also becomes quite
awkward when an attenuating transistor comnects two storage nodes. Many logic
simulators, din fact, utilize algorithms that are ad hoc versions of the
lattice approach using a large number of states (e.g. 4 to 12) to encode a
variety of possible conditions at a node. As might be expected, these
programs typically do not simulate the effects of transistors in the X state
accurately and only work for a restricted class of circuits. Our graph model
avoids these difficulties, and the resulting simulation algorithm 1s both
simpler and more gemeral than previous ones. Furthermore, we only require the
three states 0, 1, and X, because the simulator dynamically traces through the
network to determine the condition on a node rather than encoding it in the

state value.

To make the transition from the formal graph model to a simulation
algorithm, we will derive a set of sparse wmatrix equations in a simple,
discrete algebra which expresses the effect of the paths in the switch graph
at each node. These equations can be sclved by a relaxation algorithm to
yileld the excitation state of the network. We will then describe the
simulator MOSSIM IIll which simulates the behavior of a circuit by taking a
series of unit steps, where within each step a set of equations i1s solved to
compute the excitation state and the nodes are set to their excitations. This
approach to simulation of repeatedly solving a set of sparse matrix equations
to compute the new system state gives MOSSIM IT some of the character of a
circuit simulator as compared to other logic simulators. As with cirecuit

simulation, such an approach is appropriate for MOS logic simulation, because

the new state of each node depends on the interactions between network
elements rather than on a fixed direction of information flow. Unlike circuit
simulators, however, the switch-level equations are much easier to solve and
we can more easily exploit the latency in the network to avoid resimulating
those parts of the network which are not changing state. The development of a
formal switch-level model has resulted in a simulator which improves on

earlier switch-level simulators in its accuracy, speed, and capabilities.

2. Network Model

A switch-level network consists of a set of nodes {nl’_,,,nn} connected by
a set of transistors {t;,...,t;}. No restrictions are placed on the structure
of the network —-— any arbitrary network of transistors can be simulated. Each
node n; has a state y; in the set {0,1,X}, with 1 and 0 corresponding to high
and low voltage levels, respectively, and with X indicating an uninitialized
node or a node voltage which may lie between the two logic thresholds. Each
node 1is classified as either an input node or a storage node. Input nodes
provide strong signals to the system and are not affected by the actions of
the network, much like voltage sources in electrical networks. Examples
include the power and ground nodes Vdd and Gnd which act as constant sources
of 1 and 0, respectively, as well as any clock or data inputs. Storage nodes
have states determined by the operation of the network, and these states

remain on the nodes much 1like the storage of charge in capacitors. Each

storage node n; hag a size in the set {K|,...,Kpax}. The size of a node
indicates its approximate capacitance relative to other nodes with which it
may share charge, where sizes are ordered Hl < wee < Kmax- When storage nodes
are connected together with no connections to input mnodes, they wlll be
charged to a state dependent only on the state(s) of the largest node(s). The

node size values Hl,--"Hmax have no properties other than their ordering;

they only indirectly represent actual capacitances. This model provides a
simplified view of charge sharing which is wvalid for most circuit designs.

Each input node has size W to distinguish it from storage nodes.

vdd T w
precharge

Bus K
d,
read I I write
Connect %
Kl | ¥ store 1
Gnd)
o - Input node * - Storage node

Figure 2-1: Switch-Level Model of Three Transistor Dynamic RAM

Figure 2-1 shows a switch-level model of a three transistor dynamic RAM
circuit in which the bus node has size HZ to indicate that it can supply its
state to the storage node of the selected memory element during a write
operation and to the drain node of the storage transistor during a read
operation. Most MOS circuits can be modeled with at most three node sizes
(Hl, KZ,QJ), with high capacitance nodes such as pre-charged busses assigned

size Hz and all other storage nodes assigned size Kl' However, in the

interest of generality, we will allow any number of different sizes.
drain
gate “___{
source

Figure 2-2: Transistor Diagram

A transistor 1is a three terminal device with terminals labeled "gate",
"source", and "drain" as shown in Figure 2-2. No distinction is made between
the source and drain connections -- every transistor 1is a symmetric,

bidirectional device. Each transistor has a type in the set {n,p,d}. The

three transistor types n, p, and d correspond to n-type, p—type, and depletion
mode devices, respectively. A transistor acts as a resistive switch
connecting its source and drain nodes controlled by the state of its gate
node. Each transistor t; has a state zj in the set {0,1,X} with O indicating
an open (nonconducting) switch, 1 indicating a closed (fully conducting)
switch. _—_— S ST A transistor in the X state
forns an indeterminate conductance between (inclusively) its conductance when
open (i.e. 0.0) and when closed. Much of our effort in developing the model
will be directed toward treating such transistors 1in an accurate and
consistent way. The relation between gate state and transistor state depends

on the transistor type as given by Table 2-1.

gate state n~-type p-type d-type
0 0 1 1
1 1 0 1
X X X 1

Table 2-1: Transistor State as Function of Gate Node State

Each transistor has a strength in the set {¥,...,Y,,.} indicating (in a
simplified way) 1its conductance when closed relative to other tramsistors
which may form part of a ratioed path, where strengths are ordered
71 < ave <'Yhax. When a path consisting of transistors in the 1 state
connects a storage node to some input node, the storage node is driven to a
logic state dependent only on the state(s) of the input(s) connected by the
strongest paths, where the strength of a path equals the minimum transistor
strength in the path. The transistor strength values'WE,.,,,Y%ax have no
properties other than their ordering; they only indirectly represent actual

conductances.

Several examples of switch-level representations of logic gates are shown
in Figure 2~3. Most CMOS circuits do not inveolve ratloing and hence can be
modeled with one transistor strength (11). Most nMOS circuits can be modeled
with just two strengths (Y], Y,), with pullup load transistors having strength
Y1 and all others having strength Y,. Some circuits rely on more levels of

transistor ratios, and hence in the interest of generality we allow any number

vdd T

1 1
L% Out
T 1y ¥g % Out
Inl , n’Yz In | ns\r]_
Gnd o
Gnd
nMOS Nand gate with pass transistor CMOS inverter

Note: Transistors are labeled with type and strength.
Figure 2-3: Switch-Level Models of Loglc Gates

of different strengths.

The switch-level network model attempts to capture those aspects of an MOS
circuit which determine its logical behavior, while abstracting away the
detailed electrical behavior. As a result of the abstraction, however, the
model may not predict the true behavior of a circuit, especially in cases of
marginal tramnsistor or node sizing errors. Furthermore, structures which rely
on detalled analog properties such as sense amplifiers, arbiters, and
time-critical circuits may be modeled incorrectly. Many of the errors missed
by a switch-level simulator can be detected by a static check of pullup to

pulldown ratioslo, and by performing circuit simulations on small portions of

the design. The switch-level model seems to strike a reasonable balance

between a detailed electrical model and a simplified and abstract logical

model.

The network model presented here generalizes the models used in earlier
switch-level simulators such as MOSSTML7 a5 well as Terman’s programs TsIM10
and ESIM in two major respects. First, by assigning a discrete strength to

avery transistor, we can model a wider variety of circuits in which the

10

B) Store

data

’

Gindl Gind Gind.

Figure 2-4: Switch-Level Model of Static Register

relative resistances of transistors determines the logical behavior. Previous
simulators could only model the resistive nature of pullup loads in nMOS
circuits by using a "pullup" node type. All other tramsistors were considered
equal in strength and stronger than pullups. Our new model can express béth
these circuits (by representing the pullup transistor explicitly as a d-type
transistor of strength Yl), as well as circuits containing attenuating
transistors other than pullups. For example, ¥igure 2-4 shows the
switch—-level representation c;f a static register cell described in Section 7.3
of Mead and Conwayl in which the feedback loop contains a high resistance
transistor so that the driving logic can overwrite the value stored in the
register during a write operation. This is expressed in the switch-level
model by assigning the feedback transistor strength Yi, and the transistors in

the driving logic strengths Yi and Y3. Such a c¢ircuit requires a more

11

sophisticated simulation algorithm than those used by earlier switch-level
simulators based on finding transitive closures in graphs, because the nodés

on either side of the feedback transistor may have different excitation

states.

Sécond, by assigning sizes to storage nodes we can model circuits in which
the relative capacitances of nodes serves a logical function, such as the
precharged bus circuit of Figure 2-1. Terman’s prbgrams TSIM and ESIM
simulate such circuits by wusing the values of the nodal capacitances to
compute the approximate voltage resulting when a set of nodes share charge and
applying a threshold function to yleld a new state 0, 1, or X. This approach,
however, becomes difficult to apply when nodes are commected by transistors in
the X state, indicating that the nodes may or may not share charge. There
seems to be no way of combining the abstract concept of a logic state X
representing an unknown conductance with the exact c¢ircuit concepts of
real-valued capacitances and voltages without introducing inconsistencies. By
adopting a simplified model of charge sharing based on discrete "sizes" we

achieve a more uniform level of abstraction giving more consistent results.

3. The Network Exeitation

The state of a switch-level network is given by two vectors y and z with
elements ranging over the set T = {0,1,X}, where ¥4 indicates the state of
node ny, and zy indicates the state of transistor tj. In general, the state
of a transistor is determined by the state of its gate node, and we will use

the notation z(y) to represent the vector of transistor states created when

the nodes are in states given by the vector y.

We will use the concept of a network excitation to describe the behavior of
a switch-level network much as is done with logic gate and relay networks.

The excitation function is defined in terms of the more primitive steady state

response function which will be motivated informally in this section and

defined formally in terms of a graph model later.

An MOS transistor behaves much like a voltage-controlled, nonlinear

12

resistor with the gate voltage controlling the resistance between the source
and drain nodes. Suppose in a transistor circuit we could control the
transistor reslstances independently of the node voltages. For a given
setting of the transistor resistances, the circuit would act as a network of
passive elements which, for a given set of initial node voltages, would have a
unique set of steady state node voltages. Thus a function mapping transistor
resistances and initial node voltages to steady state voltages gives a partial
characterization of the behavior of a transistor circuit. The steady state
response function F gives just this sort of characterization, but in terms of
the node and transistor states 0, 1, and X. That is, the steady state response
F(y,z) equals the vector of node states y° which would be reached if the nodes
were initialized to states given by the vector y, and the transistors were
held fixed in states given by the vector z. This function provides only a
partial characterization of network behavior, because it does not describe the
rate at which nodes approach their steady state voltages nor the effect of the

changing transistor states as their gate terminals change state.

Bryant has shown® that the steady state response in a switch-level network
describes the set of steady state voltages 1n an electrical network as the
relative conductances of transistors of different strength and the relative
capacitances of storage nodes of different size approach infinity. Thus,
although the switch-level model represents the system state and parameters
with discrete wvalues, it can be viewed as a limiting case of a continuocus

system model. Such a derivation, however, 1s beyond the scope of this paper.

The excitation function E of a switch-level network is defined to give the

steady state response of the nodes to an initial set of node states when the

transistors are held fixed in states determined by these initial node states:
E(y) = F(y,z(y)).

This definition is similar to the conventional notion of an exeitation

function for a relay or logic gate network. For such networks, the excitation

function yields the new values of the state variables for a given set of inmput

13

values and old state variable values. 1In our formulation, every storage node
represents a state variable, because state is stored in a switch-level network
both in feedback paths and as charge on the storage nodes. Thus, although the
switch-level model differs from both relay and logic gate models in the way
states are formed and stored, these models describe the logical behavior of

systems in similar ways.

Given a method for computing the excitation state, a "unit delay" logic
simulator can be implemented which simulates the operation of a network by
repeatedly computing the exciltatlon states for the nodes and setting the nodes
to these states until a stable state is reached. That is, with the nodes in
initial state ¥, the network is simulated until it stabilizes in a state

gy = 1ﬁm Ek(y)
where the superscript k denotes k applications of the functlion E. The program
MOSSIM II simulates the effect of each change in clock or data inputs in this
way. It presents the user with a timing model in which transistors switch one
time unit (i.e. one application of E) after their gate nodes change state.
Such a timing model tells little about the speed of a circult but usuwally
guffices to describe the logical behavior. As with other unit delay
simulations, this computation may not reach a stable condition due to

oscillations in the circuit, and hence the program places an upper bound on

the number of steps simulated. Thus, a method for computing the steady state

response of a network provides the key to applying the switch-level model.

4. Ternary Logic

The X state represents an uncertain or invalid node logic level or
transistor conductance. Such states can arise during the normal operation of
a MOS circult due to (generally transient) short circuits or 1mproper charge
sharing, and hence the switch-level model must take account of these states in
a reasonable way. The use of a third or undefined logic wvalue has been
studied extensively for relay and logic gate networks,l2, 13, 14 gpnd we will

define its effect in switch-level networks in a similar way. In fact,

14

switch~level simulations of logic gates implemented with conventional CMOS and

nMOS circuit structures yield the same results as would a three-valued logic

gate simulator.

We will refer to the set T = {0,1,X} as the ternary domain and its subset
B = {0,1} as the Boolean domain. The elements of T are partially ordered

0 <X and 1 < X as denoted by the following ordering diagram:
X
0 1

This ordering is extended to vectors of ternary values in the usual way, i.e.
a <b 1f and only if a; < bj for all i. The least upper bound (l.u.b.) of a
set of ternary values equals 1 (or 0) if and only if all elements of the set
equal 1 (or 0), and equals X otherwise. Thus, the l.u.b. operation acts as a
"consistency" operation with inconsistency represented by X. The least upper
bound of a set of ternary vectors is a vector with elements equal to the least
upper bound of the corresponding vector elements. One important property of

any least upper bound operation is that for any set of sets A,eeas4,,

l'u‘b'(Al U eee U An) = luu.b-{l.u.b.(Al),...,l.u-b- (An)}- (1)
This follows directly from the fact that the least upper bound operation is

both commutative and associative.

For any function over a Boolean domain (but possibly having a ternary

range}, f£:BO-->TM its ternary extension is defined as the function ft:TD__sTm

such that

ft(a) = l.u.b. {£(B)|b 6 BO, b < a}. (23
That is, when some of the inputs to ft equal X, each output equals a Boolean
value if and only if it would have this same value if the X inputs were set to
any possible combination of 0°s and 1°s. The ternary extension obeys several
important properties which are easily proved. First, the restriction of the
extension to the Boolean domain equals the original function, i.e. for any

a 6 B0, f(a) = ft(a). Second, any ternary extension ft is monotonic, i.e. 1f

15

a <b, then £ft(a) < ft(b), so the effect of an X as input to a function can
only be to produce X°s on outputs that would otherwise have Boolean values.
Finally, the ternary extension 1is the minimum function that satisfies the
above two properties. That is, if some function £’ over ternmary vectors is
equivalent to f over the Boolean domain and 1is also monotonic, then
£t(a) < £7(a) for all a. Thus, the ternary extension captures the idea that
the value X represents an uncertain or ambiguous logic value which when given
as an argument of a function will yield an uncertain or ambiguous output if

and only if the output is sensitive to this input.

From the standpoint of implementation, computing a ternmary function by
evaluating the function with those inputs equal to X set to every combination
of 0 and 1 would require 2K evaluations for k inputs equal to X. For the
special case of the steady state response function we will develop a more

efficient algorithm to obtain the same result.

We will define the steady state response function for a switch-level
network F:TR X T® ——> TR by first defining it for arguments restricted to
Boolean wvalues and then generalize it as the ternary extension of the
restricted function. That is, the steady state response on node Ny equals 0
or 1 if and only if it would have this same steady state response if the nodes
initially in the X state were set to any combination of 0°s and 1°s and the
transistors in the X state were set to any combination of 0°s (open) and 1°s
(closed.) According to this definition, even if several transistors have the
same gate node, they may respond differently when this node is in the X state.
This models the fact that transistors may have slightly different switching
thresholds and may behave quite differently when the node voltage 1s near one

of the thresholds.

Evaluating the steady state response with the nodes and transistors im the
X state set to combinations of 0°s and 1’s would seem to ignore the effects of
node voltages and transistor conductances lying between their minimum and

maximum wvalues. However, Bryant has shown® that such node voltages and

.

16

transistor conductances cannot lead to steady state voltages outside the range
observed with each node voltage and each transistor conductance set to elther
its minimum or its maximum wvalue. Thus, we are justified in defining the
steady state response function over ternary states as the ternary extension of

the function defined over Boolean states.

5. Formation of the Steady State Response
Let us first define the steady state response function for the case where
both the initial node states and the transistor states have Boolean values.

Then we will show how to generalize this function to termary values.

5.1. Boolean Node and Transistor States
For a Boolean transistor state z, the effective Interconmection topolegy of

the network can be described by a Boolean switch graph with vertices

corresponding to the nodes and with undirected edges corresponding to the
transistors in the 1 state. More formally:

Definition 1: For transistor state z € BM, the Boolean switch graph

S(z) contains a vertex v; for each node ny with size Size(vy{) equal to
the size of node ny. $(z) contains an edge e; for each transistor t
such that z; = 1. Edge ey connects the vertices corresponding to the
source and ﬁrain nodes of t; and has a strength Strength(e;) equal to

the strength of t;.
In the terminology of graph theorylg, a switch graph is classified as a
"vertex-weighted, edge-weighted, undirected multigraph", where the weights

indicate the sizes and strengths of the corresponding nodes and transistors,

and a pair of vertices can have more than one edge between them.

The effect of the initial voltage of one node on the steady state voltage
of another through a series of conducting transistors 1s described in terms of
a rooted path consisting of the vertex representing the origin node (the
"root"), the edges representing the transistors, and the vertex representing
the final node in the path (the "destination").

Definition 2: A rooted path p in a Boolean switch graph 1s a triple
<Root(p),Dest(p),Edges(p}> consisting of an initial wvertex Root(p), a
final wvertex Dest(p), and a (possibly empty) set of edges Edges(p)
such that the elements of Edges(p) form a contiguous path from Root(p)
to Dest(p).

17

The length of a rooted path p equals the number of edges in Edges{p). As a
special case, a rooted path may have length 0, in which case Edges(p) = ¢ and
Root(p) = Dest(p), i.e. the path represents the effect of the initial node
voltage on its own steady state voltage. A path may contain cycles (i.e. it
may pass through a vertex more than once), although such paths do not play an
important role in the formation of the steady state response. OQur definition
of a rooted path is similar to the usual definition of a path in an undirected

graphls, except that we permit paths with no edges.

The strength of a rooted path p, denoted |p|, is defined to equal the

minimum of the size of Root{p) and the minimum edge strength in Edges{p), or

more formally:

l[pl = Min {81ze(Root(p))} U {Strength(e;)| e; 6 Edges(p)} (3
iJi e

where sizes and strengths are ordered

Ki<."<.KmaX<Yl<...<Y

max <w.

The strength of a rooted path indicates, in a simplified way, the approximate
amount of charge that could be supplied along the corresponding path in the
electrical circulit and hence the relative importance of the path in
determining the steady state voltage of the node Vrepresented by the
destination vertex. A rooted path of strength (Wis called an input path. Tt
consists of only a single vertex corresponding to an input node and no edges.
An input path represents a voltage source which can supply whatever current is
needed to maintain an input node at a constant voltage. A rooted path with
strength in the set {\{,...,\;ax} is called a driving path and has strength
equal to the minimum edge strength in the path. A driving path represents a
path in the circuit from an foput node through a set of conducting
transistors. Such a circuit path can supply current to the destination node
at a rate limited by the conductance of the path. In our simplified view of
the eircuit the conductance of a path is characterized by the strength of the

weakest transistor in the path. Finally, a rooted path with strength in the

set K = {Hls""nmx} is called a charging path and represents either the

18

initial charge on the destination node 1itself (path length 0), or the charge
which could be supplied by some other storage node through a set of conducting
transistors, where the amount of charge 1s limited by the capacitance of the
node. In our simplified view of the circuit node capacitances are
characterized by discrete sizes. The different path types are ranked
charging < driving < input, because charging paths indicate a source of finite
charge, driving paths indicate a source of unbounded charge (i.e. current} at
a finite rate, and input paths indicate a source of unbounded charge at an

unbounded rate.

A). Switch Graph Rooted Paths to Vertex b
Root
-- Root
" Root
Root \,2 Kl Hl Yé
e N ————
blocked
B). Switch Graph Rooted Paths to Vertex b
vdd Root
o W
Yl Root
00 .
Ky
a ZK' * b * * R X K *
Y - Root
Y,
o w

blocked

Figure 5=1: Examples of Rooted Paths in Boolean Switch Graphs

In evaluating the set of rooted paths to a vertex, we must eliminate

several extraneous cases in which a rooted path cannot possibly represent a

19

gsource of charge to the corresponding node in the electrical cireanit. First,

we will define an initial segment of a rooted path as follows:

Definition 3: A rooted path p° is an initial segment of a rooted

path p if and only if Root(p’) = Root(p) and Edges(p’) is a subset of
Edges(p).

An 1nitial segment may consist of the original path with some of the final
edges removed, with some of the cycles removed, or both. Furthermore, any
rooted path 1s an initial segment of itself. A rooted path is said to be
blocked under the following condition:

Definition 4: A rooted path p in a Boolean switch graph is blocked
if and only if for some initial segment p” of p and some rooted path
q, Dest(p”) = Dest(q) and |p’| < Iql.

That is, a rooted path is blocked 1f at some wvertex along the path there is a
stronger rooted path to this wvertex. Blocked paths fall into two categories.
First, any rooted path to a vertex with strength less than the strongest path
to that vertex will be blocked, because any charge that could be supplied
along that path would be inconsequential compared to the charge supplied by
the stronger path. Second, even a path of maximum strength to a vertex may be
blocked at some Iintermediate vertex, because the charge that could be supplied
along the path by the initial node is diverted by some other charge source at
the intermediate node. Figure 5-1 shows switch graphs 1llustrating rooted
paths and path blocking. This figure shows two switch graphs along with all
acyclic rooted paths with the vertices labeled b as destinations. In both
cases only the paths with root vertex Gnd will not be blocked. The charging
paths will be blocked, because this charge will be removed by the current from
node Gnd. Furthermore, the driving paths with root Vdd and destination b will
be blocked, even though in both cases they have the same strength as the paths
with root Gnd and destination b. In the first case the path passes through
the vertex for input node Gnd and hence is blocked by the path of strength
Wrepresenting this node. This form of path blocking expresses the fact that
subnetworks connected only through input nodes do not affect one another. 1In
the second case the path from Vdd to b is blocked at vertex a by the path of

strength YE from Gnd to a. This form of path blocking expresses the fact that

20

a source of charge will have no effect if 1s is overridden at some
intermediate node. These examples illustrate a rather subtle aspect of
switch-level networks in that the paths in a network cannot be analyzed
independently because of interactions at intermediate nodes. We have defined

path blocking to eliminate these extraneous cases.

The following properties of rooted paths follow directly from the
definitions:
Proposition 1l: If p” is an initial segment of p, then |p| < |p°|.
Proposition 2: Path p is not blocked if and only if no initial
segment of p is blocked.
We will define the relation P(z) to indicate those pairs of vertices
connected by unblocked paths in S(z).

Definition 5: jP(2)i if and only if there exists an unblocked
rooted path p in 5(z), such that Root(p) = V4 and Dest(p) = vy.

We can see that the following property holds by Proposition 2 and by the fact
that any path contalning cycles has an initial segment with the same
destination that does not contain any cycles:

Proposition 3: jP(z)i if and only if there exists an unblocked,
cycle-free rooted path p 1in 8S(z), such that Root(p) = vy and

Hence, paths contailning e¢ycles have no importance in the formation of the

steady state response.

The steady state response is defined in terms of the relation P{(z).

Definition 6: The steady state response of node ny for initial node
state y 6 B™ and transistor state z 6 B® is given by

yg = Leuebedyy | jP(2)1 3. (4)
That is, if the sources of charge represented by the unblocked rooted paths to
a vertex all act to drive or charge the corresponding node to 1 (or 0), then
the steady state value for this node will equal 1 (or 0), while if a2 node is
driven or charged by both high and low wvoltage charge sources with equal
strength, 1t will have a steady state wvalue equal to X indicating a short

circuit or Invalid charge sharing. In both examples of Figure 5-~1 node b will

21

have steady state 0, because in both cases only wvertex Gnd is the root of an

unblocked path with destination b.

Our definition of the steady state response function for networks with
Boolean transistor states describes the behavior of a wide varlety of MOS
logic circuits in a unified way. By ranking both charging paths and driving
paths in the same total ordering we describe both the formation of state by
charge sharing and by connections to input nodes in a single definition. By
allowing rooted paths to have no edges we can describe dynamic memory in terms
of a charging path consisting of only the vertex corresponding to the memory
node. The operation of ratioed circuits is described in terms of driving
paths of different strength, with all but the strongest path{(s} being blocked,
while the operation of complementary circuits follows directly from the
definitions of the tranmsistor types. Thus we have combined many possible

modes of operation into a single formal model.

5.2. Ternary States

We will now generalize the equation for the steady state response to the
case where some of the nodes and transistors are in the X state. We will
prove that a specification in terms of an extended switch graph model is
equivalent to the ternary extension of the steady state function for Boolean
arguments.
5.2.1. Ternary Wode States

We can show that Equation 4 applies even when some of the node states in y
equal X as follows.

Lemma l: The steady state response of node Ny for initial node
states y 6 TD and transistor states z € BM i3 given by

Yi = l-u.b.{yj I jP(Z)i}-
To prove this, observe that the switch graph and the propertles of the paths
are functions only of the transistor states, and hence Equations 2 and 4 can

be combined using Equation 1 to give

4

¥y

lou.bo{by | jP(z)1, b & B", b <y}

l.u.b-{yj | iP(z)1i}.

22

Thus, nodes initially in the X state do not require special comnsideration in
evaluating the steady state response. This result is hardly surprising,
because the steady state response as a function of initial node states obeys a
property similar to the superposition principle in linear networks. That is,
the importance of the initial state of one node on the steady state response
of another is independent of that state.
5.2.2. Ternary Transistor States

Transistors in the X state create more difficulty in a switch-level network
than do nodes in the X state, although we will find that the the switch graph
formalism can be extended to express the steady state response for this case.
This will lead to a computationally efficient method for computing the steady

state response when X‘s are present.

A transistor network in state z € TD can be represented by a ternary switch

graph with vertices representing the nodes, "l-edges" representing the
transistors in the 1 state, and "X-edges" representing the transistors in the
X state.

Definition 7: For transistor state z € TM, the ternary switch graph

S(z) contains a vertex v; for each node ny, with size Size(vy) equal
to the size of node n;, S(z) contains a l-edge e; for each tramsistor
t; such that zy = 1, and an X-edge for each tramsistor ty such that
zy = X, Edge e; connects the vertices corresponding to the source and

drain of transistor t; and has strength Strength(ey) equal to the
strength of this transistor.

The definitions of rooted paths and path strength are extended to ternary
switch graphs as follows.

Definition 8: A rooted path p in a ternary switeh graph is a
quadruple <Root(p),Dest(p),l-Edges(p),X~Edges(p)> consisting of an
initial vertex Root(p), a final vertex Dest(p), a set of l-edges
1-Edges(p), and a set of x—-edges X-Edges(p), such that the elements of
the set Edges(p) = l-Edges(p) U X-Edges(p) form a contiguous path from
Root (p) to Dest(p).

We will call a rooted path p such that X-Edges{p) = @ a definite path, because
such a path will be present for any assignment of Boolean values to the
transistors in the X state. The strength of a rooted path in a ternary switch
graph is defined just as before (equation 3) as the minimum of the size of the

root and the strengths of the edges (both l-edges and X-edges).

23

Path blocking is defined for ternary switch graphs in a slightly peculiar
way, the reason for which will soon become clear.

Definition 9: A rooted path p in a ternary switch graph 1s blocked
if and only if for some initial segment p° of p and some definite
rooted path q, Dest(p’) = Dest(q) and [p"| < |ql.

That is, & path in a termary switch graph is blocked if and omnly if it would
be blocked for all possible assignments of Boolean states to the transistors
in the X state. If we use definition 5 to define the relation P(z) for
ternary switch graphs, then we can show a close tie between a ternary switch
graph and the set of Boolean switch graphs formed by setting the transistors
in the X state to all combinations of O and 1. This will allow us to define
the steady state response function in terms of the unblocked paths 1in a

tetrnary switch graph.

First, we will show that the relation P(2z) is monotonic with respect to z.
Lemma 2: If z° < z then jP(z")1 ==> jP(z)i.

To prove this, observe that state z can differ from state z” only in that for
some values of 1, z; = X while zi =1 or z; = 0. The switch graph S(z) can
contain X-edges which are either l-edges or are absent in 5(z’), but it cannot
differ otherwise. Therefore any path p in the switch graph S(z”) must be
present in S(z) and have the same strength. On the other hand, the set of
definite paths in S(z) will be a subset of those in S$(z°). Therefore, if a
path is not blocked in S(z”), it will not be blocked in 5{z).

Second, we will show that the relation P(z) contains only those node pairs
which will be connected by an unblocked path for some assignment of Boolean
states to the transistors in the X state.

Lemma 3¢ For amy =z € TM, if 4P(z)i, then for some =z” & BT,
jP(z’)io

To prove this, suppose vertices vy and vy satisfy jP(z)i. Let p be a rooted
path with root(p) = vy, dest(p) = vy, and such that for any initial segment
p’, there is no path q with root(q) = vy, dest(q) = dest(p’), and |q| > |p°I.
That is, p is a path of maximal strength between the two vertices along its

entire length. Define z° as:

24

21, 23 6 {0,1}
z; =41, z4=X, e4 €& X-Edges{(p)
0, 2y=X, e4 @ X-Edges(p)
That 1s, the Boolean switch graph $(z”) is constructed by replacing the
X-edges along path p in 5(z) with l-edges, and eliminating all other X~edges.
Clearly path p will be present in S(z’), but we must prove that it will not be
blocked. Suppose path p is blocked and let ¢ equal the shortest path in $(z%)
such that for some initial segment p’ of p, Dest(p’) = Dest(q), and
Ip’l < Iql. Either q does not intersect p except at Dest(q), or for some

,

1nitial segment p° of p and some (proper) initial segment q° of q,
Dest(p’”) = Dest(q’). Note that p’’ may or may not be an initial segment of
P’ In the first case, q must have no edges in common with p, and hence q
must be a definite path in S$(z) which contradicts our assumption that p is not
blocked in S(z). 1In the second case, we know that [q°] < [p"’]|, or else q
would not be the shortest path which blocks p. Therefore 1f we were to
construct the path r with Root(r) = Root(p’), Dest(r) = Dest(p”), and
Edges(r) = Edges(p”’) U (Edges(q)~Edges(q”)), then this path would have
strength {r| > |q| > [p’], which would wvioclate our definition for the
construction of path p. Thus, there can be no path q which blocks path p, and
iP(z")i,

Lemmas 2, and 3 together show that for any z 6 T0, jP(z)i, if and only if

for some z° & B™, jP(z’)i. This result combined with Lemma 1 and equation 1
lead directly to the following theorem.

Theorem 1: The steady state response of node ny; for initial node
states y € T! and transistor states z 8 TR is given by

,

Y1 = l.abe{yy | jR(2)1).
This theorem has important implications for switch-level simulation. It gives

us a method for computing the steady state response of a network for an

arbitrary initial node and transistor state which achieves the same effect as

computing the steady state response with the nodes and transistors in the X .

25

state set to all possible combinations of 0 and 1, while avoiding the
exponential complexity this process would entail. This result is somewhat
surprising, because it has no analog in electrical networks. TFor example,
there 1s no easy way to determine the ranges of possible steady state node
voltages in a network of variable resistors, but in effect we are doing just
that with switch-level networks containing transistors in the X state. This
is possible in switch-level networks because of our simplified view of the
electrical behavior, and because we are only trying to classify the steady

state response of a node as either 0, 1, or X.

A)Ye X on Input of inverter

Switch Graph Rooted Paths to Vertex b

vdd Root

Root Root
o % N *
\E Kl Kl
blocked
B). X on pass transistor gate.
Switch Graph Rooted Paths to Vertex b
vdd Root
0
\E . Root "~ Root
a Ly }:t'b % X * X X
%__.___ SN) S LI S
Y,
o o
Gnd Root\(z Kl Yl Kl
blocked

X-edges indicated by X on edge.
Figure 5-~2: Ternary Switch Graph Examples

26

Figure 5-2 shows examples illustrating the use of ternary switch graphs in
evaluating the steady state response function. The first ezample shows the
switch graph corresponding to an nMOS inverter with an X on its input along
with a pass transistor with a 1 on 1its gate. There are unblocked paths with
vertices Vdd and Gnd as roots and vertex b as destination (the path from Gnd
is not definite and therefore does not block the path from Vdd), and hence the
steady state response at node b equals 1l.u.b.(0,1) = X, That 1is, the
uncertainty represented by the X on the inverter input creates an uncertain
voltage at b. The second example shows the switch graph corresponding to the
gsame circuit, but with the inverter input equal to 1 and the pass transistor
gate equal to X. There are unblocked paths with vertices Gnd and b as root and
vertex b as destination (the driving paths do not block this charging path
because they are not definite.) Hence the steady state response at node b

equals l.u.b.(0,y;), i.e. it equals O if node b was previously in state 0 and

equals X otherwise.

6. Stability of the Steady State Response

The steady state response was described informally by an analogy with the
set of steady state node voltages in an electrical circuit. From this
analogy, we would expect that once the nodes reach their steady states, they
will remain there until some transistor or iaput node changes state. That is,
if y° = F(y,z), then y° = F(y',z). This property also has practical
applications in implementing a simulator, because it indicates that the steady
state response for some region of the network need not be recomputed unless
some input node or transistor in the region has changed state. To prove it,
we will first show that the path relation P(z) is transitive in a strong

s5ense.

Lemma 4: For any ternary switch graph S(z), jP(z)i if and only if
for some k, jP(z)k and kP(z)i.

To prove the "if" part (transitivity), suppose there exists an unblocked path
p with Root(p) = vy, Dest(p) = vy, and an unblocked path r with Root(r) = vy

and Dest(r) = vy. Note that since p is not blocked, Size(vy) < |pl. Now form

27

a (possibly cyclic) path s with Root(s) = Vi, Dest(s) = vy, and
Edges(s) = Edges(p) U Edges{r). We must show this path is not blocked. Path
s 1s blocked only if for some initial segment s° there is a definite path g
such that [8’]| < |q|. Any initial segment s’ of s must fall into one of three

categories:

l. s° 1s an initlal segment of p. Then q would also block p which
violates our assumption that p is not blocked.

2. s8° consists of path p followed by the edges of some initial segment
r’ of r. Then q would also block r, because

|z |

Min [Size(vy), Min {Strength(ey)| ey 6 Edges(r’)}]

|A

Min [[pl, Min {Strength(e,)| eq 6 Edges(z’)} |

= |87 < Iql.

This would viclate cur assumption that r is not blocked.

3. 8 consists of a path described by one of the first two cases with
one or more cycles removed. Since removing a cycle creates a path
with greater or equal strength than the original, and since the
original path was not blocked, s” cannot be blocked.

Thus the relation P(z) is transitive.

To prove the "only if" part, suppose that jP(z)i. Then vertex Vi satisfies
jP(z}j, because the length 0 path with root Vs 1s an initial segment of any
path from v; to vy and hence must not be blocked. Therefore j satisfies the

requirements for k.

From Lemma 4 we can see that

{Vj | for some k, jP(z)k and kP(z)i} = {vj | jP(2)i}.
We are now ready to prove the stability of the steady state response.

Theorem 2: For the steady state response function F, if
y" = F(y,z), then ¥y = F(y’,2).

The proof of this theorem follows directly from Theorem 1 and Lemma 4 as

follows.

28

Lou.be{yg | kP(2)1}

Fi(y’, 2)
= 1-u-b-{yj [for some k, jP(z)k and kP{z)i}
= l.u.b.{yj | jP(2)i}
= yi.
7. An Algebraic Formulation
We have shown that the steady state response of a switch-level network can
be described in terms of the paths in a switch graph, and we have proved
several important properties about the nature of the steady state response
function wusing the switch graph formalism. As a further step toward the
development of a switch-level simulation algorithm, we will develop a simple,
discrete algebra with which the steady state response can be expressed in
terms of a set of matrix equations. A method for solving these equations then
forms the basis of the simulation algorithm. Our development adapts the
technique of evaluating paths in graphs with a cost function defined over a

closed semiring algebra 19 to take account of path blocking.

7.1. An Algebra of Rooted Paths
Let S denote the set

S = {lﬂ Kl,cov,Hmax,Yl,coo,Ymax,w}
where the elements of this set are totally ordered:
A<R1<000<Kmax<Yl<c00<Ymax<w.

This set consists of the set of possible path strength values along with a new
value 2,to represent the absence of an unblocked path. We will define an
algebra over elements of S with a "sum" operation + yielding the maximum of
its arguments and with a "product" operation * yielding the minimum of its
arguments. The algebra <S,+,-,RJU> obeys the following properties:

1. <S,+,A> is a monoid:
a. + is closed over S: a, b6 5 ==>a+ b 68

be + is associative: (a+ b) +c=a+ (b + ¢)

c. Ais the identity element for +: a + A A+ a=a

29

2. <8,+@> 15 also a monoid.
3. + is commutative and idempotent:

a. a+b b+ a

b. at+a=a
4. A is an annihilator for *: a ‘A =)

5. * distributes over +: a * (b+ ¢} = (a * b) + (a * ¢).
This algebra is quite primitive, particularly due to the lack of inverses for
the operations + and °*. However, it is still useful to view the functions
"maximum" and "minimum" over path strengths as sum and product operations,
because they obey many of the same properties of arithmetic addition and
multiplication. Furthermore, this approach leads naturally to a matrix
notation, because for any n, the algebra <8™XB 4+ '« g .1 > also obeys the
properties listed above, where SU¥XI denotes the set of all n x n matrices with

elements in 5, +, and °, denote matrix "addition" and "multiplication", i.e.

[A "y Blyy = 2 ay byjs
k=1,n

On denotes the matrix with each element equal to)., and I, denotes the matrix

with diagonal elements equal to @) and all other elements equal to).
We will also define the operation ™ as

a, a>b

1,a<b

This operation will be used to express path blocking, where a path of strength

a”~b =

a can be blocked by a path of greater strength b, and hence have effective

strength A Some properties of 7 include:
l. ¥ is idempotent: a ~ a = a.
2. 7 distributes over + and *:

a. (a+Db) Te=(aTe)+ (b7)

30

be (2 *b) “"ce=(a~"c)+ (b~ ¢

3. ¥ is monotonic in its first argument: a <b==> (a " ¢} £ (b ")
These properties are by no means exhaustive. In fact they would be satisfied

by the function which simply yields its first argument.

7.2. From Paths to Equations

We can use this algebra to evaluate the sets of rooted paths in a switch
graph. For a ternary switch graph 5(z), let Gl[i,j] and GX[1i,j] equal the
strength of the strongest l-edge and X-edge between wvertices vy and vy
respectively. Furthermore, let 8y denote the size of vertex vy. If we define
qli,r] as the strength of the strongest definite path of length less than or

equal to r with destination vy, then we can see by induction on r that:

Q[iyo] Si

qii,r] 8y + Z e1ri,jl qlj,r=11, r>1 (5)

j=1,n

That 1s, we can form a meximum strength definite path of length less than or
equal to T to vertex V; conelsting of either the length 0 path with v, as
root, or a maximum strength definlte path of length less than or equal to r-1
to some vertex Vj followed by a l-edge from vy to vi. If we define q; as the
strength of the strongest definite path of any length with vertex vy as
destination, then qy = q[i,n], where n is the number of vertices in the graph,
because at least one of these paths must be cycle-free, and any cycle-free

path in a graph of n vertices must have length less than or equal to n.

To illustrate how this style of equation can take path blocking into
account, define pl[i,j,r] as the strength of the strongest unblocked path of
length less than or equal to r with v; as destination and vj as root, or
equals if no such path exists. By induction on r we can see that:

p[i!jSO] = Si.sij ~ qi

pli,j,rl = [s[i,jl+ Z (Gl{i,k]+GXEi,k])'p[k,j,r—1]] T a4
k=1,n

31

where Sij equals Wif 1 equals j and equalslz.otherWiSe. That is, we can form

a maximum strength unblocked path from vertex Vi to vertex vy of length less
than or equal to r consisting of either the lenmgth 0 path with root v; (omly
in the case where i=j), or a maximum strength unblocked path of length less
than or equal to r-l from vy to some vertex vy followed by either a l-edge or
an X-edge from vy to vy. However, if no such path has strength greater than

or equal to 44, all paths will be blocked and pli,j,r] will equal;l. Thus we

"~

have used the operation ™ and the values qi to eliminate blocked paths.

These values could be used to evaluate the steady state response function,
since there will always be an acyclic path of maximum strength, and hence
jP(2)i 1if and only if pli,j,n] > A. A more efficient method, however, follows
from the observation that the steady state response on node ny will equal 1
(resp. 0) if and only 1f there is no node ny such that jP(z)i and y4 equals 0

or X (resp. 1 or X). Let us define the functions up and down as

s, y=1o0orX

EE(S’ y) =
A, y=10
down(s, y) < (S ¥y -0eorX
k, vy =1

and define ul[i,r] (resp. dl[i,r]) as the strength of the strongest path of
length less than or equal to r to node n; from a node with initial state 1 or

X (resp. 0 or X). These quantities can be expressed inductlvely as:

uli,0] = up(sy, y4) ~ qy

uli,r] = up(sy, yq) + Z (6111,Kk] +GXIi.kl)‘u[k"-"1]] Ta1 ()
k=1,n

d(i,0] = down(sy, y;) ~ q4

dli,r] = [_dg_w_a(si, vi) + Z (Gl[i,kJmX[i,k])-d[k.r-n] Tqy (7)

k=1l,n

If we define 4y and dy as ul[i,n] and d[i,n), respectively, then uy (resp. dj)

32

will be greater than 2,if and only if there exists an unblocked path to node

iy from some node nj such that Y5 equals 1 or X (resp. 0 or X). Therefore,

the steady state response on node ny is given by
1, d; = A

Y; = 0, uy =)_
X, else. (8)
The simulation algorithm we will present shortly computes the steady state
response for a set of nodes by first computing the values q;, to determine the
strength of the strongest definite path to each node. Then the values uj and
d; are computed, effectively tracing all unblocked paths for which the root
nodes have initial states 1 or X and 0 or X, respectively. Finally Equation 8

is applied to give the new state of each node.

7.3. Fixed-Point Equation Form

Equations 5, 6, and 7 all follow a similar form that can be expressed more
concisely as a fixed-point equation, where a fixed point of a function f 1s a
value x such that x = f(x). An efficient algorithm for solving such equations
forms the basis of our switch-level simulator. We will introduce fixed-point

equations in a general way and then show how it applies to our particular

case.

Let <D,<,0> be any domain consisting of a finite set of values D, a partial
ordering over this set <, and a distinguished element 0 6 D such that for any
other x € D, 0 < x. That 1s, <D,<> forms a join semilattice?0 with least
element 0. A function f£:D-~>D is said to be monotonic if for any x,y 6 D, if
x <y, then f(x) < f(y). The following shows the equivalence of 1inductive
equations of the form we have seen above and a fixed-point form.

Theorem 3: For any monotonic function f:D-->D the equation x
has a unique minimum solution given by:

f(x)

*min %EE>QO £k(0)

where the superscript k denotes k applicationdg of the function f.

To prove this theorem, consider the sequence

0, £(0), £(£(0)), + « « , £K(O), « & ..

33

First, we will prove that this sequence converges and hence a limit exists.
Clearly 0 < £(D), and by the monotonicity of £ one can prove by induction on k
that fk(O) j_fk+1(0). Hence the sequence is nondecreasing. Any strictly
increasing sequence in D would have length at most |D|, and since D is finite,
there must be some 3 such that £I(0) = fj+l(0), and for any k > j,
fj(O) = fk(O), i.e. the sequences converges to a value xj ;.. From this we can
see that x . must be a solution, because
Xgin = £3(0) = £(E10)) = Elxyg).

Now suppose for some X, x = £(x). Starting with the basis 0 < x, we can prove
by induction on k that £k(0) slfk(x) = x, and therefore since x4, 1is the

limiting value of this sequence, =xp;, < x. Therefore =i, is the minimum

solution.

This thecrem is a special case of a well known theorem in lattice theory21
regarding the least fixed point of a continuous function over a complete
lattice. For finite domains, any monotonic function is continuous. In

general, a function can have many fixed points, but any monotonic function has

a unigue least (minimum)} fixed point.

To apply this theorem to our problem, consider the the set of vectors of
length n with elements in S, denoted 5%, and define the partial order < as

a <b if and only if a; < b; for all i. Then the vector A with each element

equal to }'is the minfmum element in the set. Define + and ™ over vectors as

the pointwise extension of the corresponding scalar operations, i.e.

[a+b]i = aj + by
[a = bl; = a5 ~ by,
and the matrix product * as
Wb, = 2 a, b
k
k=1,n 1k

The operations + and * are both monotonic, and ~ is monotonic in 1ts first

argument. The functions up and down are also defined over vector arguments as

34

the pointwise extensions of the corresponding scalar functions.

If we let s represent the vector with elements s; and Gl and GX represent
the matrices with elements Gl[f,j] and GX[1,j], then equation 5 can be

rewritten in matrix notation as

[

q[0] 8

It

qlr] 8 + Gl*q[r~-1]

This equation 1is of the form qlr] = frtl(A) with f equal to the monotonic

function

f(a) = 8 + Gl*a
Therefore, Theorem 3 can be applied to show that ¢ is the minimum solution of

the equation:

q = 8+ Gl*q (9
In general, equation 9 can have more than one solution, but solutions other
than the minimum Include the effects of false paths consisting of sets of

edges in cycles with no root nodes and hence are of no interest.

Similarly, equations 6 and 7 can be expressed in matrix forms as

uf0l = up(s,y) ~ q
ulr] = [up(s,y) + (Gl4GX)*u[r-1]] ~ q
d[0] = down(s,y) ~ gq

d[r]

[down(s,y) + (Gl+GX)*d[r-1]] ~q
These equations also have the form required for Theorem 3, and therefore u and

d are the minimum solutions of the equations:

u [yﬂ(s,y) + @D | g (10)

d

#

[down(s,y) + (G1+GX)*§] ~ q ' (11)

Equations 9, 10, and 11, along with equation 8 express the value of the
steady state response function for a switch-level network in a very concise

way, especlally considering the wide variety of behaviors seen in MOS circuits

35

and the subtleties of path blocking and transistors in the X state.

7+4. Example

As an example of the fixed-point equations for the steady state response,
consider the network of Figure 5~2B consisting of an nMOS inverter with a 1 on
its input followed by a pass transistor with an X on its gate. Assume that
all storage nodes have size Hl, and that nodes a; b, Vdd, and Gnd are labeled

nj, ny, n3, and n,, respectively. Assume also that the initial state of node

a 1z 1 and of node b is 0, The fixed-point equation for q is then:

qq K]_ Y.

A AN q1
99 K1 AAA DA q2
q3 = w + ¥y a4 R . | a3
q w Yo A A A Qs

which has a wminimum solution q =Y2, q2='{1, and q3 = q4 =%. The

fixed-point equations for u and d then become

1 K A% MY, uy e
ug A Y2421 2 u2 K1
| = ol + [vnx22]|]| - |
Uy A Yo A A A uy
and

dy A A% MY, d Y7
dy K1 Yo A 4 dy K1
d3 = A + Yi A A A . dj ~ w
dy, w Y2A2 dg w

The first set of equations has minimum solution Uy = ug = yy =1, and uy =,
while the second set has minimum solution dl =dy = YZ’ d3 =2, and dy =y,
Therefore, node nj has steady state response 1, while all others have steady
state response 0. If, on the other hand, node b had either 1 or X as initial
state, we would obtain a solution with uy = Kl and all other elements of u and

d the same giving a steady state response on b of X.

36

8. Solution Algorithm

As the first step in implementing a switch-level simulator based on the
formal model, we will develop an algorithm for solving fixed-point equations
of the form of equations 9, 10, and 11 for sparse networks in which only part

of the network is "active", i.e. changing state, at any given time.

8.1. Solving Fixed-Point Equationa for Sparse Systems
Suppose we wish to find the minimum solution of an equation of the form

a = £(a) where £:S"—->80 can be expressed as:

[f(a)}i = bi + jGPi fij(aj) (12)

and where the sets P, are subsets of the set {l,...,n} describing the
(presumably sparse) interconnections in the network. As an example, for
storage node n;, equations 9, 10, and 11 can be expressed in this form as
follows:

Equation for q:

b = -+ z 3
i=84 jet, Gl{i,]j]

fij(ay) = Gl14,31°a4 (13)
Equation for uy:

by = [EE(SisYi) + 2 up(Gl[1,31+6GX (4,71, Yj)] Ty
je1y

fjGap =[ceris, s4exie, 30 ag] ~ g (14)
Equation for dj:

b; = [M(Si,yi) + jGSIi down(G1[1i,]jl+GXI[4i,]], Yj)] T a4

Bj(ap) =[@10L,3046x18, 3 a5] ~ g (15)
where the set I; represents the set of 1input nodes connected to ny by a
transistor in the 1 or X state, and the set Py represents the set of storage
nodes connected to node ny by a transistor in the 1 or X state. By separating
the terms representing connections to input nodes from those representing

connections to storage nodes we take advantage of the property that any rooted

path passing through an i1nput node must be blocked, and hence input nodes

37

serve to isolate portions of the network from each cother. Furthermore, we do
not need to compute the new states of the input nodes, because their states

are not affected by the network operation.

We will assume that the functions £14 are both monotonic and nonincreasing
where a function g is sald to be nonincreasing if for every argument x,
g(x) £ x. Clearly, the operation * is nonincreasing, the scalar operation ~
is nonincreasing in its first argument, and any composition of nonincreasing
functions is nonincreasing. This property of functions reflects the property
of switch graphs that no path can be stronger than any of its initial
segments, which in turn reflects the resistive nature of the transistors. We

will also assume that our equations are symmetric with fij = fji for all

storage nodes n; and n4, and with j 6 Py if and only if 1 & Pj.

The following program solves equation 12 where L denotes some data
structure such as a stack in which elements can be inserted (put) and removed

(get) in unit time. The queuing discipline used is not important.

38

procedure SOLVE1(f):

begin
L := @
for i := 1 to n do
begin
81 = by;

put(L, 1i);

donei := false

end;
while L # @ do
begin
J = get(L);
if not donej
then begin
donej 1= true}
for each 1 8 Pj do
if fij(aj) > aq
then begin
a; 3= fij(aj)
donei := false;
put(L, i)}
end

end
end;
return(a)
end

The procedure SOLVEl utilizes a relaxation method to solve the equation and
relies only on the monotonicity of the functions fij' Starting with each ay
set to by, 1t performs relaxations of the form a; := ag + £15(25), until any
further relaxations will have no effect, and hence we have arrived at a
solution to a = f(a). It controls the order of relaxations by maintaining a
list L of those indices j for which a; has been changed, but this value has
not yet been used in relaxation steps on adjacent vertices. The flag donej is
used, because in general index j may be placed in L several times before it is

removed, and we only need perform relaxations with the most recent value of

39

aj_ Alternatively, we could check this flag before inserting an index in L,
but the method shown here carries over more naturally to our next refinement

of the algorithm.

To analyze the complexity of our algorithm, let s equal the size of the set
8, i.e. the number of different node sizes and transistors strengths, and t
equal the number of transistors. Assuming each node is the gate, source, or
drain of some transistor, the number of nodes n must be less than or equal to
3t. In procedure S0OLVEl, each node is updated at most s times, and the
combined effort to evaluate the functions fij for all i and j can be made
proportional to the number of transistors. Hence, the algorithm has worst

case time complexity less than or equal to O(s*t).

By a more judicious cholce of the order in which nodes are selected for
relaxation, we can exploit the nonincreasing property of the functions fij to
obtain an algorithm with worst case time complexity O(stt}. To do this, we
must replace the single list L by an array of lists indexed by the elements of
S to serve as "buckets" in which each index i is kept sorted according to the
value of ay. 1In general, s is a small value (e.g. 5), and hence this scheme
is quite practical.

procedure SOLVE2(f):
begin
for each x € S do L[x] := §;
for 1 :=1 to n do
begin
ay = by;
put(Lla;], 1);
doney := false
end;
RELAX(L, a, £f);
return(a)

end
In this program, index 1 is inserted into the 1ist corresponding to the

initial value by. The procedure RELAX, defined below, then performs a series

40

of relaxations, always working with the strongest remaining value.
procedure RELAX(L, a, f):

£or ® = Viorseeas Y o Hoayse e sKy do
begin

while L[x] # @ do
begin
j 1= get(L[x]);
1f not donej
then begin

done; := true;

for each 1 6 Pj do

if fij(aj) > ay
then begin
a = fij(aj);
put(Lla;], i);
end
end
end

end
RELAX performs relaxations much as with SOLVEl, except that it always chooses
some index j such that a4 is greater than or equal to a; for any index k such
that done, equals false. Due to the nonincreasing nature of the functioms, no
further relaxation step can produce a value greater than a4 on node nj, and
hence each node ig chosen exactly once for the relaxation step. In terms of
our graph model, this procedure traces the paths 1n a switch graph starting at
the input nodes, and always tracing the strongest remaining path. Thus, by
exploiting the sparseness of the network and the properties of the equations

to be solved, we can solve them with a linear algorithm.

8.2. Incremental Solution Method

During the simulation of a network, typically only a small portion of the
network changes state on a given step, while the rest of the network remains
inactive, a property sometimes called "latency". Most logic gate simulators

exploit this property by recomputing the output of a logic gate only if at

41

least one of its inputs has changed state. We can achieve a similar effect in
switch-level networks by viewing the network activity as creating small
"perturbations" of the network, and only computing the effect of these
perturbations rather than recomputing the entire network state. In terms of
our fixed-point equations, suppose we have computed the minimum solution of
the equation a = f(a) and now wish to find the minimum solution of an equation

a = f’(a), where

(£’ (8-)]1 = b;_ + j%" f;_j(a:l)
i

and £ obeys the same restrictions as f£. Furthermore, assume that bi, f;j’ and
Pl differ from by, fy4, and Py for only a small number of values of i and
j+ In solving the equations for gq, u, and d, the differences between b; and b;
reflect the changing state of storage node n;, the changing states of the
transistors connecting node ny to input nodes, as well as the changing states
of connected input nodes. The differences between fij and f;j as well as
between Py and P; reflect the changing states of the transistors connecting

node n; to other storage nodes.

We will say that a node n; is perturbed if by # b;, Py # P;, or fy5 # f;j.
Such a perturbation can only affect nodes in the vicinity of ny, where a node
n4 is said to be in the vicinity of ny, 1f there is a path from n; to ny in
the graph defined by the adjacency sets P, for all k. In the case of
switch-level networks, n; is in the same vicinity as n; if there is some path
of transistors in the X or 1 state between the nodes which does not pass
through any input nodes. Typically, a viecinity contains only a small number
(e«g. less than 5) of nodes, and hence activity remains highly localized. The
following procedure uses an "incremental" technique to recompute only selected

parts of the network state.

42

procedure INCR _SOLVE(f, £°, a):
begin
E := §;
for each 1 such that by # by, Py # Pi, or £ # f£1; do
begin put(E, i); donei 1= false end;

for each x 8 S do L[x] := §;
while E # ¢ do
if not donei then
begin
V=g
FIND VICINITY(V, 1);
for each j € V do
begin
doney ;= false;
f0undj 1= false;
83 = by
put(Llasl, 1);
end;
RELAX(L, a, £°)
end

end;
The above program starts by constructing a list of perturbed nodes E and
solves the new equation by finding the vicinity of each perturbed node using
the procedure FIND VICINITY, initializing the nodes in the vicinity, and then
applylng the procedure RELAX to solve the equation for all nodes in this

vicinity. The flag dome; is checked each time to avold repeating the

computation when several perturbed nodes are in the same vicinity.

The code for FIND VICINITY is as follows:

43

procedure FIND VICINITY(V, i):
begin
foundy := true;
put (v, 1);
for each j 6 P; do
if not foundj
then FIND VICINITY(V, j);

end;
This procedure traces outward from each perturbed node ny, to find its entire
vicinity by a form of depth first searchlg, using the flag found; to avoid
duplication and endless cycles. At the start of simulation found; is false

for all i, and this flag is reset to false in INCR SOLVE in preparation for

the next computation.

In the worst case, every node in a network may be perturbed, and hence the
procedure INCR_SOLVE may have the same complexity as BSOLVEZ. However,
experience has shown that in typical network simulations, the speedup achieved
by the incremental solution technique is considerable, typically requiring at

most QO(t) operations per clock cycle simulated.

9. Simulation Program

We will now describe how the switch-level simulator MOSSIM II is

implemented, based on the algerithm described in the previous section. First,

we will describe the simulator from the user’s perspective, including its
timing model, the ways networks can be generated, and the user interface of

the simulator. Then we wlll describe the data structures and coding of the

actual simulation program.

9.1. Simulation Timing

MOSSIM II is designed primarily for simulating clocked systems in which a
set of state sequences is applied cyclically to a set of clock nodes. It is
assumed that the clocks operate slowly enough in the actual circuit for all
nodes to reach stable states between each change of clock and input data

values. As a consequence, each clock cycle simulatlion can be divided into a

&t

series of simulation phases, where within each phase all clock and data inputs

remain constant. The clocking scheme is declared at the start of a simulation
session by listing the clock nodes and the sequences to apply on each phase.
For example a two-phase, nonoverlapping clock c¢ycle as used in Mead and

Conwayl would be declared as follows:

clock Phil:0100 Phi2:0001
This eclocking scheme requires 4 simulation phases, with the extra 2
representing the periods when both clocks are at 0. Each simulation phase
involves repeatedly computing the excitation state of the network and setting
the nodes to thelr excitations until a stable state 1s reached. The coding of

the phase simulation routine will be described in detail shortly.

9.2. Network Generation

Networks are specified to MOSSIM II in a standard file format so that they
may be generated by a number of different sources. The network file consists
of a series of node and transistor declarations, with each node declaration
specifying the node size and name, and with each transistor declaration
specifying the tramsistor type, strength, and the names of the gate, source,
and drain nodes. Two common ways to generate networks are by writing a
program 1in the network description language NDL, and by running a circuit
extraction program on the mask descriptions.10 These two ways allow a design
to be verified at two key points in the design process —- after the initial
logic design and after chip layout. The language NDL allows the user to
specify a design as a hierarchy of nets where each net contains declarations
of nodes, transistors, and calls to other nets. WNodes are named according to
the calling path in the net hierarchy so that each node has a unique name that
can be referenced within the simulator. This language is implemented as an
extension to the programming language Mainsail?? go that the full power of a
programming language can be used in describing a network. MOSSIM II has also
been integrated into design enviromments such as silicon compilers by

generating the network files from their internal databases.

It is also possible to incorporate function blocks inte a switch-level

45

network where a function block is a logic element with inputs, outputs and
internal state, and the behavior is described in terms of a function mapping
the input and old state values into output and new state values. This permits
the user of a switch-level simulator to represent sections of a design at an
abstract functional level and other sections at a more detailed tramsistor
level. Function blocks are implemented in MOSSIM II with the functional

behavior given by a user~coded procedure which is invoked each time one of the

inputs to the block has changed.

9.3. User Interface

In implementing several simulators we have found that writing the code for
the user interface requires more time and effort than coding the underlying
simulation algorithm. However, a well-designed interface can greatly help the
user perform the difficult task of testing and debugging a complex loglc

design.

Testing a VLSI logic design and locating the errors has many of the
characteristics of debugging a large computer program. The logic networks are
large and complex, and the errors are often caused by subtle interactions
between different components. For this reason the user interface for MOSSIM
IT1 was patterned after interactive software debuggers. A simulation session

proceeds interactively, starting by reading in a network, defining a clocking

scheme, and declaring which nodes are to be observed during simulation. Then
the user can give commands to simulate the network for a number of clock
cycles, probe or set the state of any node in the network, force a value into
the network by temporarily turning a storage node into an input node, save and
restore the network state, and set a breakpoint which interrupts the
simulation when a specified condition occurs. Furthermore, the user can write
a program that 1s linked in to provide commands to the simulator, thereby

allowing unlimited extensions to the user interface.

46

9.4, Phase Simulation

The basic operation seen by the user is the simulation of a phase. We will
give a slighéiy simplified description of how this routine is implemented in
MOSSIM II, using an informal programming notation similar to PASCAL. We will
depart from the vector notation used earlier and instead represent the network
as a set of records with pointers between them to represent the
interconnections in the network. Nodes and transistors are represented by

records declared as follows:

type necdetype = record
size, state, newstate, q, u, d: integer;
found, done: boolean;
fanoutset, inputconset, storageconset: transistorset
end;

type transistortype = record
type, strength, state: integer;
nodel, node2: nodetype
end;

The state, node size, and transistor strength values are coded as small
integers, with the size and strength representations ordered as in the set S.
Each node record also contains pointers to three sets of transistors: the
fanout set containing transistors for which this node is the gate, the storage
connectivity set containing transistors which connect this node to other
storage nodes, and the input connectivity set containing transistors which
connect this node to input nodes. Each transistor record contains pointers to
its source and drain nodes, labeled nodel and node2, with the convention that
if either is an input node, it is labeled nodel. Our simulator also requires
a variety of sets: those which remain fixed during simulation (such as the
above-mentioned transistor sets) and hence can be implemented as arrays or
linked 1lists, and those for which elements are dynamically inserted and
removed during simulation and can be implemented as stacks or circular

buffers.

The following code shows how the phase simulation is implemented. It

gstarts with a list C of nodes for which the newstate fields have been changed,

47

indicating the new values of the input clock and data nodes for this phase.
For each node in this list it updates the node state, updates the transistor
states for which this node 1s the gate according to Table 2-1 and bullds up a
list of storage nodes "perturbed"” by these changes. That is, a changing
transistor state perturbs both the source and drain nodes, a changing input
node state perturbs all storage nodes connected by transistors in the X or 1
state, and a changing storage node state perturbs that node alone. Then a
series of wunit steps is simulated, each time returning a 1list of newly
perturbed nodes, until either a stable state is reached (i.e. no more nodes
are perturbed) or a maximum step limit is exceeded. This limit should be set
high enough to allow the network to reach a stable state during correct
operation but low enough to prevent excessive computation when an unbounded
ogcillation occurs.

procedure PHASE(C):

begin
E := @
for each node 8 C do
begin
node.state := node.newstate;
for each trans & node.fanoutset do
if TSTATE(node.state, trans.type) # trans.state
then begin
trans.state != TSTATE(node.state, trans.type);
PERTURB(E, trans.nodel);
PERTURB(E, transg.node2)
end;
if node.size = OO
then begin
for each trans 8 node.storageconset do
if trans.state = 1 or trans.state = X
then PERTURB(E, trans.node2)
end
else PERTURB(E, node);
end;

stepcount := 03
while E # ¢ and stepcount < steplimit do
begin

E := STEP(E);

stepcount := stepcount + 13

end;

48

The procedure PERTURB, shown below, is called to add a node to the list of
perturbed nodes. It does this, however, only if the node is a storage node

and is not already on the list.

procedure PERTURB(E, node):
if node.size # W and node.done
then begin
node.done := false;
put(E, node);
end;

The procedure STEP simulates a single unit step. It starts with an "event
1ist" containing a set of perturbed nodes. For each of these nodes the
procedure VICINITY_RESPONSE is called to compute the steady state response of
nodes in the same vicinity and to build up a 1list C of all nodes which change
state. The flag '"done" is checked each time to avoid recomputing the steady
state response for a vicinity containing more thanm one perturbed node. Then
the nodes in C are set to their new states, the transistors in their fanout
sets are updated, and any nodes perturbed by the changing transistor states
are accumulated in a new event 1iét in preparation for the next unit step.

Note that setting a node to its steady state response does not perturb this
node, because by Theorem 2, this state 1s stable.

procedure STEP(E):
begin
C := @
for each node 8§ E such that not node.done do
VICINITY RESPONSE(C, node);

E := §;
for each node 6 C do
begin
nede.state := node.newstate;
for each trans 6 node.fanoutset do
1f TSTATE(node.state, trans.type) # trans.state
then begin
trans.state := TSTATE(node.state, trans.type);

PERTURB(E, trans.nodel);
PERTURB(E, trans.node2)

end;
end;
return(E)
end;

The procedure VICINITY RESPONSE computes the steady state response for all

49

nodes in a vicinity. It first constructs a list V containing all nodes in the
vicinity using the depth-first search algoritbhm described earlier. Then it

solves the equations for q, u, and @ and sets the newstate field of each node
according to Equation 8.

procedure VICINITY RESPONSE(C, node):
begin
V = @3
FIND VICINITY(V, node);
SOLVE Q(V);
SOLVE_U(V);
SOLVE D(V);
for each vnode 8 V do
begin
vnode.found := false;
vnode.newstate := NSTATE(vnode.u, vnode.d);
if vnode.state # vnode.newstate

then put(C, vnode)};
end;

end;
Finally, the procedures SOLVE_Q, SOLVE U, and SOLVE D all have a similar
form, and hence we will show just one. This procedure adapts the algorithm

shown in the program INCR _SOLVE to compute the value of q, according to
Equation 13.

50

procedure SOLVE Q(V):

begin
for each node & V do
begin
node.done := false;
node.q := node.size;
for each trans 6 node.inputconset do
if trans.state = 1
then node.q := max(node.q, trans.strength);
put(L{node.q}, node);
end;
for x :=Y, A 1 o do
while Lix] # ¢ éékmax’ K
begin
node := get(L[x]);
if not node.done
then begin
node.done = true;
for each trans 6 node.storageconset do
begin
if node = trans.nodel
then othernode := trans.node2
else othernode := trans.nodel;
gval := min(node.q, trans.strength);
if trans.state = 1 and othernode.q < qval
then begin
othernode.q := gvals
put(L [gvall, othernode)
end :
end
end
end
end;

As we have shown, the coding of the phase slmulation is not difficult,

because we have expressed the entire operation of the simulator in terms of a

single set of equations to be solved. Furthermore, by careful attention to

data structures and coding, the simulator can be implemented very efficiently

with only a small amount of dynamic memory management, and with activity

limited to those parts of the network for which nodes are changing state.

51

10. Performance

Evaluating the performance of a program such as MOSSIM II and comparing it
to other simulators is quite difficult, because the speed depends as much on
the nature of the circuit belng simulated as on its size. With this in mind,
we will illustrate some general performance characteristics using several
counter circuits as test cases. Table 10-1 summarizes the performance of
MOSSIM 1T on three different 64 bit counter circuits. All measurements were
performed on a DEC 20/60. The first circuit utilizes a pre~charged Manchester
carry chain and pass transistor multiplexors as described in Mead and Conway,
with a total of 1664 transistors. The second utilizes nMOS logic gates to
implement a carry-ripple adder with a total of 1280 transistors. The third
utilizes the same loglc design as the second, but with the gates represented
explicitly as '"function blocks", causing MOSSIM IY to act much 1like an
event-driven logic gate simulator with a total of 448 gates. Thus, our test
cases allow us to compare two different styles of circuit designs and two
different levels of representation, except that the Manchester circuit cannot

be described at a gate level.

Circuit # Elements CPU sec./cycle Events/cycle
Manchester 1664 1.7 2075
Ripple, switches 1280 .3 417
Ripple, gates 448 .1 ‘ 296

Table 10-1: Statistics for 64 Bit Counter Simulations

The third column of the table gives the average number of CPU seconds per
clock cycle simulated. Relative to the gate-level representation, the
switch-level representation of the carry-ripple counter tequires 3 times more
computation per clock cycle, and the Manchester circult requires 17 times
more. These ratios hold across a wide range of counter sizes, with the
simulation time in each case growlng linearly with the counter size. These
results indicate that a switch-level simulator can operate at speeds
comparable to an event-driven logic gate simulator with some penalty due to

the lower level of representation. It also illustrates that two circuits with

52

the same function can have significantly different performance in simulation.

The fourth column of the table helps explain these performance
characteristics. This column lists the average number of events per clock
cycle simulated, i.e. the total number of nodes perturbed during the clock
cycle. We can see that the simulation of the Manchester circuit has about 5
times more events per clock cycle, because every bit position of the carry
logic is precharged and selectively discharged each clock cycle, whereas the
carry logic of the ripple cilrcuit 1is only activated when a carry is
propagated. Furthermore, the switch-level simulation of the ripple counter
invelves slightly more events than the gate~level simulation due to the lower
level of representation. Dividing the CPU time per eclock cycle by the number
of events, we see that the two switch~level simulations require about 1
millisecond per event, while the gate~level simulation requires less than half
this amount. Given that the switch-level simulator must compute the effect of
a perturbed node by dynamically tracing a vicinity and solving a set of
equations, while the logic gate simulator simply applies table-~lookup to

compute the gate function, this ratio 1s surprisingly small.

The performance characteristics of these three examples match our overall
experience with switch-level simulation. In evaluating the performance of
MOSSTM II for a wide variety of circuits, we have found that the average CPU
time per event simulated remains constant at about 1 millisecond regardless of
the nature of the circuit to be simulated, the presence of X states, etc.
Since this time includes the overhead for such activities as event list
manipulation, we would expect a gate=level simulator to have some speed
advantage, but only by a constant factor. On the other hand, the average
number of events per clock cycle simulated depends greatly on the "duty cycle"
of the circuit, 1.e. the percentage of transistors changing state each clock
cycle, as well as on the circuit size. Such MOS design techniques as
precharged logic lead to much higher duty cycles than is found in typical

logic gate designs.

53

11. Conclusion

In this paper we have presented a network model which closely matches the
structure of MOS8 circuits, derived a method for expressing thelr logical
operation in terms of a graph model, and shown how a logic simulator can be
implemented which simulates the network operation by repeatedly solving a set
of fixed-point equations in a simple, discrete algebra. Experience has shown
that this form of simulator operates at sufficient speed to be practical for
very large circuits while realistically modeling many of the subtleties of MOS

circuits.

This paper has demonstrated the value of developing a formal model as the
basis of a loglc simulator. It allows many of the more subtle aspects of the
simulator such as the modeling of the X state to be dealt with in a rigorous
manner. Furthermore, the actual algorithm and its optimizations can be broken

down inte individual parts and analyzed individually.

In this paper we have described switch-level simulation as a software
algorithm and have compared it to other software simulators. Recently,
special purpose system523 for logic simulation have been constructed which
substantially improve on the speed of software running on a general purpose
computer. These systems were designed primarily for simulating logic gate
networks, although methods for performing switch-level simulation on them have
been PIOPOSEd-zl" We are currently i1nvestigating the design ofa hardware
simulator based on the algorithm presented in this paper. Loglc simulation
has a high degree of potential parallelism, and the basic reiaxation
operations of our algorithm are very simple. Hence, switch-level simulation

seems well suited for hardware implementation.

12. Acknowledgments

Mike Schuster has provided valuable assistance in the development of the

switch=level model and in the implementation of MOSSIM II.

5.

6.

7.

10.

11.

12.

13.

14.

15-

16.

17.

18.

19.

20.
21.

22,
23.

24,

1liv

REFERENCES

Mead, C., and Conway, L., Introduction to VLSI Systems, Addison Wesley,
1980.

Sakauye, G., et al, "A Set of Programs for MOS Design," Eighteenth
Design Automation Conference, ACM, 1981, pp. 435-441.

Sherwood, W., "A MOS Modelling Technique for 4~State True-Value
Hierarchial Logic Simulation," Eighteenth Design Automation Conference,
ACM, 1981, pp. 775-785.

Holt, D., and D. Hutchings, "A MOS/LSI Oriented Logic Simulator,"
Eighteenth Design Automation Conference, ACM, 1981, pp. 280-287.

Bryant, R., A Switch-Level Simulation Model for Integrated Logic
Circuits, PhD dissertation, Massachusetts Institute of Technology, 1981.
Bryant, R., "A Switch-Level Model of M0S Logic Circuits," VLSI 81,
Academic Press, August 1981, pp. 329-340.

Hayes, J. P., "A Logic Design Theory for VLSI," Second Caltech
Conference on VLSI, Caltech, 1981, pp. 455-476.

Hayes, J. P., "A Unified Switching Theory with Applications to VLSI
Design," Proceedings of the IEEE, Vol. 70, No. 10, October 1982, pp.
1140-1151.

Bryant, R., "MOSSIM: A Switch-Level Simulator for M0S LSI," Eighteenth
Design Automation Conference, ACM, 1981, pp. 786-790.

Baker, C., and C. Terman, "Tools for Verifying Integrated Circuit
Designs," Lambda Magazine, Fourth Quarter 1980, pp. 22-30.

Bryant, R., Schuster, M., and Whiting, D., Department of Computer
Science, California Institute of Technology, MOSSIM II: A Switch-Level
Simulator for MOS LSI, User’s Manual, 1982.

Brzozowski, J. A., and M. Yoeli, "On a Ternary Model of Gate Networks,"
IEEE Transactions on Computers, March 1979, pp. 178-183.

Breuer, M. A., "A Note on Three-Valued Logic Simulation," IEEE
Transactions on Computers, April 1972, pp. 399-402.

Yoeli, M., and S. Rinon, "Application of Ternary Algebra to the Study of
Static Hazards," Journal of the ACM, 1ll-1, January 1964, pp. 84-97.
Garey, M. R., and D. S. Johnson, Computers and Intractibility: a Guilde
to the Theory of NP~Completeness, Freeman, 1979.

Ullman, J. D., Computational Aspects of VLSI Design, Computer Scilence
Press, 1983,

Bryant, R., "an algorithm for MOS logic simulation,” Lambda Magazine,
Fourth Quarter 1980, pp. 46=53.

Liu, C. L., Introduction to Combinatorial Mathematies, McGraw-Hill,
1968.

Aho, A. V., J. E. Hopecroft, and J. D. Ullman, The Desgign and Apalysis of
Computer Algorithms, Addison Wesley, 1974.

Birkhoff, G., Lattice Theory, American Mathematical Society, 1967.
Scott, D. S., "Continuous Lattices," Toposes, Algebraic Logic, and
Loglc, Springer-Verlag, 1972, pp. .

Xidak, Inc., Mainsail Language Manual, Menlo Park, Ca, 1982,

Pfister, G. F., "The Yorktown Simulation Engine, Introduction,"
Nineteenth Design Automation Conference, ACM, 1982, pp. 51-54.

Barzilai, Z., et al, "Simulating Pass Transistor Circuits Using Logic

Simulation Machines," Twentieth Design Automation Conference, ACM, 1983,
pp. 157-163.

